Идиотский бесценный мозг читать онлайн

Зачем я сейчас сюда зашел?

(разрыв между долговременной и кратковременной памятью)

У всех нас когда-нибудь так бывало. Ты занимаешься чем-нибудь в одной комнате, и внезапно оказывается, что тебе зачем-то надо пойти в другую комнату. По дороге туда тебя что-то отвлекает – звучащая по радио музыка, кем-то произнесенная удивившая тебя фраза или внезапный поворот сюжета в телевизионном шоу. Как бы то ни было, ты достигаешь своего пункта назначения, и внезапно оказывается, что ты понятия не имеешь, почему решил сюда прийти. Это злит, это раздражает, это отнимает время. Это один из множества заскоков, связанных с тем, насколько удивительно сложно устроен процесс обработки воспоминаний.

Большинству из нас хорошо известно деление памяти на кратковременную и долговременную. Они существенно различаются, но при этом зависят друг от друга. Обе носят соответствующие им названия: информация в кратковременной памяти хранится самое большее минуту, в то время как в долговременной памяти информация может и действительно хранится всю жизнь. Любой, кто называет кратковременной памятью свои воспоминания о том, что было день или даже всего несколько часов назад, не прав – это уже долговременная память.

Кратковременная память действует на небольших промежутках времени, зато именно она отвечает за непрерывные сознательные манипуляции с информацией – с тем, о чем мы сейчас думаем. Долговременная память предоставляет нам огромное количество информации, чтобы облегчить наше мышление, но само мышление происходит именно в кратковременной памяти. (Поэтому некоторые специалисты по нейронаукам предпочитают говорить о «рабочей» памяти, которая, как мы увидим дальше, по сути представляет собой кратковременную память в сочетании с некоторыми дополнительными процессами.)

Многие из вас удивятся, когда узнают, что объем кратковременной памяти очень мал. Современные исследования показывают, что среднестатистическая кратковременная память может единовременно удержать максимум четыре «единицы информация» [1]. Если дать человеку список слов и попросить его запомнить, он сможет воспроизвести только четыре слова. Это утверждение основано на бесчисленных экспериментах, где людям надо было вспоминать слова или другие объекты из показанного им списка, и в среднем с достаточной степенью уверенности они могли вспомнить только четыре. На протяжении многих лет считалось, что объем кратковременной памяти составляет семь плюс-минус две единицы. Это называется «волшебное число», или «закон Миллера», потому что число было получено в экспериментах Джорджа Миллера, проведенных в 1950 году [2]. Однако в дальнейшем была усовершенствована методика эксперимента и уточнены критерии того, что можно считать правильным воспроизведением. В результате вышло, что реальный объем памяти все же ближе к четырем единицам.



Я использую неопределенный термин «единица» не потому, что плохо изучил вопрос (ну, не только потому). Дело в том, что само понятие «единицы» кратковременной памяти очень растяжимо. Чтобы обойти ограничения кратковременной памяти и увеличить доступный объем хранилища, люди разработали различные стратегии. Одна из таких – процесс, называемый «группировка»[13 — Английское название процесса – chunking, т. е. дословно «разделение на куски».], когда человек, для более эффективного использования объема кратковременного хранилища, объединяет несколько объектов в одну единицу, или «чанк»[14 — От английского слова «chunk», обозначающего «кусок, ломоть».] [3]. Если попросить вас запомнить слова «пахнет», «мама», «сыр», «как» и «твоя», то это будет пять единиц. Однако если попросить вас запомнить фразу «Твоя мама пахнет как сыр», выйдет одна единица и, возможно, драка с экспериментатором.

Напротив, максимальный объем долговременной памяти нам неизвестен, потому что никто еще не прожил так долго, чтобы заполнить ее; она вместительна до неприличия. Тогда почему кратковременная память настолько ограниченна? Отчасти потому, что она все время в работе. Мы что-то чувствуем и о чем-то думаем каждую минуту бодрствования (и немного во время сна). А значит, информация поступает и исчезает с ужасающей скоростью. Это место плохо подходит для долговременного хранилища, где необходимы покой и порядок, – оно подобно тому, как если бы вы оставили все свои ящики и папки с документами на входе в оживленный аэропорт.

Другая причина заключается в том, что у кратковременной памяти нет «физической» основы; информация в ней хранится в виде особых паттернов нейронной активности. Поясню: «нейрон» – это официальное название клеток мозга, или «нервных» клеток. Нейроны составляют основу всей нервной системы. Каждый из них по сути представляет собой крошечный биологический процессор, способный получать и передавать информацию в виде электрической активности на оболочке клеточной мембраны, которая придает клетке форму и образует сложные связи с другими нейронами. Итак, кратковременная память основана на нейронной активности в специализированных зонах головного мозга, таких, как дорсолатеральная префронтальная кора в лобной доле [4]. Из исследований со сканированием мозга мы знаем, что в лобной доле происходит множество других, более сложных «мыслительных» процессов.

Хранить информацию в виде паттернов нейронной активности довольно сложно. Это как если бы вы составляли список покупок на пенке своего капучино: технически это возможно, потому что пенка на несколько мгновений может удержать очертания слов, но практически – бессмысленно. Кратковременная память нужна для быстрой обработки информации и манипуляций с ней, и под воздействием непрерывного потока поступающей информации все неважное будет проигнорировано, или быстро переписано, или вообще исчезнет.

В этой системе нет защиты от ошибок. Нередко важная информация вылетает из кратковременной памяти прежде, чем ее как-то используют, что приводит к сценарию «Зачем я сюда зашел?». Кроме того, кратковременная память может перегрузиться информацией и потерять способность сосредотачиваться на чем-то конкретном, в то время как в нее непрерывно поступает новая информация и новые запросы. Вы когда-нибудь видели, как посреди всеобщей сумятицы (например, на детском празднике или эмоционально напряженной рабочей встрече), где каждый кричит, чтобы быть услышанным, кто-нибудь внезапно заявляет: «Я не могу думать в такой обстановке!»? Они говорят очень буквально: их кратковременная память не приспособлена к тому, чтобы справляться с такой рабочей нагрузкой.

Очевидный вопрос: если кратковременная память, где происходит наше мышление, настолько ограничена, как нам вообще удается что-то сделать? Почему мы не сидим, безуспешно пытаясь пересчитать пальцы на руке? К счастью, кратковременная память связана с долговременной, которая значительно снижает нагрузку на нее.

Возьмите, к примеру, профессионального переводчика-синхрониста, человека, который в режиме реального времени слушает длинную подробную речь на одном языке и переводит ее на другой. Его работа, конечно же, превышает возможности кратковременной памяти? Вообще-то нет. Если вы попросите кого-то, кто на данный момент изучает язык, попробовать переводить в режиме реального времени, тогда да, для него это будет серьезный вызов. Но для переводчика слова и структура каждого языка уже хранятся в долговременной памяти (как мы увидим далее, у мозга даже есть специальные области, связанные с речью, такие, как зоны Брока и Вернике). Кратковременной памяти приходится иметь дело с порядком слов и значением предложений, но с этим она успешно справляется, особенно по мере накопления опыта. И точно так же кратковременная и долговременная память взаимодействуют у всех нас; вам не надо узнавать, что такое «бутерброд» каждый раз, когда вам его захочется, но, добравшись до кухни, вы можете забыть, что хотели его.

Информация может попасть в долговременную память несколькими способами. На уровне сознания мы знаем, что важная для нас информация, например номер телефона, переходит из кратковременной памяти в долговременную при помощи повторения. Мы повторяем ее про себя, чтобы наверняка запомнить. Это необходимо, потому что, в отличие от кратковременной памяти, где информация хранится в виде быстро меняющихся паттернов мозговой активности, в долговременной информация хранится в виде образованных синапсами связей между нейронами. Образование новых синапсов довольно просто простимулировать, например повторяя то, что вам необходимо запомнить.

Нейроны проводят сигналы, известные как «потенциалы действия», по всей своей длине, передавая информацию от тела к мозгу или наоборот, подобно тому, как электричество шло бы по странному мягкому проводу. Как правило, множество объединенных в цепь нейронов образуют нерв и проводят сигнал от одного места к другому. Нейроны не соединяются непосредственно друг с другом; на самом деле между окончанием одного нейрона и началом следующего есть небольшая щель (все даже еще сложнее, потому что у многих нейронов есть по многу начал и окончаний). Когда потенциал действия доходит до синапса, первый нейрон в цепи впрыскивает в синапс химические вещества, называемые нейромедиаторами. Эти вещества идут по синапсу и взаимодействуют с мембраной другого нейрона через ее рецепторы. Взаимодействуя с рецептором, нейромедиатор тут же запускает в нейроне следующий потенциал действия, который идет до следующего синапса, и так далее. Как мы увидим далее, существует множество разных нейромедиаторов; они жизненно необходимы практически для всей мозговой активности, и у каждого из них есть своя задача и свое предназначение. Для каждого нейромедиатора есть специализированный рецептор, который распознает его и взаимодействует только с ним, совсем как дверь в защищенное помещение, которая открывается только подходящим ключом, паролем, отпечатком пальца или сканом сетчатки.

Когда вы смотрите на определенный рисунок чернил на бумаге, он превращается в осмысленные слова на знакомом вам языке; точно так же и мозг воспринимает активацию конкретного синапса (или нескольких синапсов) как воспоминание. Считается, что именно в синапсах «хранится» вся информация в мозге; подобно тому, как определенная последовательность нулей и единиц на компьютерном жестком диске кодирует определенный файл, так и определенный набор синапсов в определенном месте кодирует информацию, которую мы вспоминаем, когда эти синапсы активируются. Поэтому эти синапсы представляют собой физическую основу конкретных воспоминаний.

Такой процесс создания новых долговременных воспоминаний за счет образования синапсов называется «кодирование»; при помощи этого процесса информация и сохраняется в мозге.

Кодирование в мозге происходит невероятно быстро, но не моментально. Вот почему кратковременная память использует для хранения информации менее устойчивые, но зато более быстрые паттерны нейронной активности. Она не образует новые синапсы, вместо этого она активирует множество практически универсальных синапсов. Когда мы повторяем что-либо, удерживая это в кратковременной памяти, оно остается «активным» достаточно долго для того, чтобы долговременная память успела перекодироваться.

Однако «повторять, пока не запомнишь» – не единственный способ что-то запомнить, и мы точно не пользуемся им каждый раз, когда нам нужно что-то запомнить. Нам это и не нужно. Существуют веские основания считать, что все, пережитое нами, так или иначе сохраняется в долговременной памяти.

Вся информация от наших органов чувств и связанные с ней мысли и чувства перенаправляются в гиппокамп в височной доле. Гиппокамп – это высокоактивная область мозга, которая постоянно комбинирует бесконечные потоки информации от органов чувств, формируя «личные» воспоминания[15 — Из текста может сложиться впечатление, что гиппокамп у человека один, подобно таламусу. Это не так. Автор забыл пояснить, что гиппокампов у нас два: левый и правый, по одному в соответствующей височной доле.]. По данным огромного числа исследований, именно в гиппокампе происходит кодирование воспоминаний. У людей с поврежденным гиппокампом новые воспоминания, судя по всему, не образуются. У тех же, кому приходится все время что-то узнавать и запоминать новую информацию, гиппокамп на удивление большой (например, как мы увидим позже, у водителей такси увеличены области гиппокампа, ответственные за ориентацию в пространстве и пространственную память), из чего следует вывод, что он подвергается повышенным нагрузкам. Некоторые исследователи даже «помечали» новые воспоминания (это сложный процесс, который подразумевает инъекции доступных для обнаружения видов белков, входящих в состав нейронов) и обнаружили, что они сосредотачиваются в гиппокампе [5]. И это не говоря обо всех новейших исследованиях со сканированием мозга, которые позволяют изучить работу гиппокампа в режиме реального времени.

Новые воспоминания образуются в гиппокампе и постепенно перемещаются в кору мозга, а «под» ними образуется следующая порция воспоминаний, понемногу «подталкивающая» их наверх. Такое постепенное укрепление закодированных воспоминаний называется «консолидация». Поэтому не обязательно крутить в кратковременной памяти информацию, пока она не будет запомнена и не перейдет в долговременную память, но нередко это критически важно для того, чтобы закодировать информацию в определенной последовательности.

Взять, например, номер телефона. Это просто последовательность цифр, которые уже есть в долговременной памяти. Зачем ей кодировать их снова? Повторение телефонного номера позволяет сделать акцент на том, что данная конкретная последовательность цифр важна и поэтому для длительного хранения ее необходимо поместить в особое воспоминание. Повторение равносильно тому, как если бы кратковременная память взяла единицу информации, прикрепила бы к ней пометку «Срочно!» и отправила бы ее в команду, ответственную за регистрацию данных.

Итак, если в долговременной памяти хранится все, почему мы все же что-то забываем? Хороший вопрос.

Общепринятая точка зрения говорит о том, что забытая информация технически остается в мозге, за исключением тех случаев, когда она физически уничтожается какой-нибудь травмой (и когда вы забываете про день рождения друга, поверьте, это наименьшая из всех проблем). Долговременные воспоминания должны пройти три этапа: быть созданы (закодированы), успешно сохранены (в гиппокампе и затем в коре мозга) и воспроизведены. Если вы не можете воспроизвести запомненную информацию, она так же бесполезна, как если бы ее не запоминали вовсе. Это похоже на ситуацию, когда вы не можете найти свои перчатки: у вас все так же есть перчатки, они все так же существуют, но у вас все равно мерзнут руки.

Некоторые воспоминания легче вызвать, потому что они более яркие (насыщенные, значимые, сильные). Например, воспоминания о чем-то, связанном с сильными эмоциями, вроде дня вашей свадьбы или первого поцелуя или того случая, когда вы достали из торгового автомата два пакетика чипсов, хотя платили только за один. Когда с вами происходит что-то подобное, у вас возникают разные мысли, эмоции и ощущения. Все они создают в мозге множество связей с данным конкретным воспоминанием, а это значит, что упомянутый выше процесс консолидации присваивает этому воспоминанию повышенный уровень важности и добавляет к нему еще больше связей, благодаря чему его становится гораздо легче воспроизвести. Напротив, воспоминания, не связанные ни с чем значимым (например, 473-я, ничем не примечательная поездка на работу), консолидируются минимально, потому их вызвать гораздо труднее.

Жертвы травмирующих событий нередко начинают страдать от «флешбэков», когда воспоминание об автомобильной катастрофе или жестком преступлении сохраняет свою живость и постоянно возвращается на протяжении долгого времени после самого происшествия (см. главу 8). Эмоции во время травматического события были крайне сильны, а тело и мозг переполнены адреналином, за счет чего обострилось восприятие происходящего, поэтому воспоминание крепко заседает в голове, оставаясь ярким и беспощадно жизненным. Это как если бы мозг, анализируя ужасное происшествие, говорил: «Вот, погляди: это ужасно; не забывай об этом; мы не хотим пройти через это снова».

Ни одно воспоминание не возникает в отрыве от ситуации. В более мирных сценариях контекст, в котором было создано воспоминание, тоже может стать «триггером», позволяющим вызвать его, и это было показано в некоторых странных исследованиях.

В одном из них ученые попросили две группы испытуемых заучить некоторую информацию. Одна группа заучивала ее в обычном кабинете; другая – под водой, одетая в водолазные костюмы [6]. Спустя некоторое время экспериментаторы проверили, насколько хорошо испытуемые запомнили информацию. Проверка проходила либо в той же обстановке, либо в другой. Те, кто учился под водой и проходил проверку под водой, набрали гораздо больше очков, чем те, кто учился под водой, но проходил тест в обычном кабинете.

1 2 3 4 5 6 7 8 9 10 11

Вступайте в группу в ВК
https://vk.com/books_reading_vk
Facebook

Telegram